§1 Definitions 5

map $\phi \times \psi : W \times U \rightarrow X \times Y$ by the formula

$$\phi \times \psi(w, u) = (\phi(w), \psi(u)).$$

Of course, $W \times U$ is an open set in $\mathbb{R}^k \times R^l = \mathbb{R}^{k+l}$, and it is easy to check that $\phi \times \psi$ is a local parametrization of $X \times Y$ around (x, y). (Check this point carefully, especially verifying that $(\phi \times \psi)^{-1}$ is a smooth map on the not-necessarily-open set $X \times Y \subset \mathbb{R}^{M+N}$). Since this map is a local parametrization around an arbitrary point $(x, y) \in X \times Y$, we have proved:

Theorem. If X and Y are manifolds, so is $X \times Y$, and dim $X \times Y = \dim X + \dim Y$.

We mention another useful term here. If X and Z are both manifolds in \mathbb{R}^N and $Z \subset X$, then Z is a submanifold of X. In particular, X is itself a submanifold of \mathbb{R}^N . Any open set of X is a submanifold of X.

The reader should be warned that the slothful authors will often omit the adjective "smooth" when speaking of mappings; nevertheless, smoothness is virtually always intended.

EXERCISES

- 1.) If k < l we can consider \mathbb{R}^k to be the subset $\{(a_1, \ldots, a_k, 0, \ldots, 0)\}$ in \mathbb{R}^l . Show that smooth functions on \mathbb{R}^k , considered as a subset of \mathbb{R}^l , are the same as usual.
- *2. Suppose that X is a subset of \mathbb{R}^N and Z is a subset of X. Show that the restriction to Z of any smooth map on X is a smooth map on Z.
- *3. Let $X \subset \mathbb{R}^N$, $Y \subset \mathbb{R}^M$, $Z \subset \mathbb{R}^L$ be arbitrary subsets, and let $f: X \to Y$, $g: Y \to Z$ be smooth maps. Then the composite $g \circ f: X \to Z$ is smooth. If f and g are diffeomorphisms, so is $g \circ f$.
- (a) Let B_a be the open ball $\{x: |x|^2 < a\}$ in \mathbb{R}^k . $(|x|^2 = \sum x_i^2)$ Show that the map

$$x \to \frac{ax}{\sqrt{a^2 - |x|^2}}$$

is a diffeomorphism of B_a onto \mathbb{R}^k . [HINT: Compute its inverse directly.]

(b) Suppose that X is a k-dimensional manifold. Show that every point in X has a neighborhood diffeomorphic to all of \mathbb{R}^k . Thus local parametrizations may always be chosen with all of \mathbb{R}^k for their domains.

- *5. Show that every k-dimensional vector subspace V of \mathbb{R}^N is a manifold diffeomorphic to \mathbb{R}^k , and that all linear maps on V are smooth. If $\phi \colon \mathbb{R}^k \to V$ is a linear isomorphism, then the corresponding coordinate functions are linear functionals on V, called *linear coordinates*.
- 6. A smooth bijective map of manifolds need not be a diffeomorphism. In fact, show that $f: \mathbb{R}^1 \longrightarrow \mathbb{R}^1$, $f(x) = x^3$, is an example.
 - 7. Prove that the union of the two coordinate axes in \mathbb{R}^2 is not a manifold. (HINT: What happens to a neighborhood of 0 when 0 is removed?)
 - 8. Prove that the paraboloid in R³, defined by $x^2 + y^2 z^2 = a$, is a manifold if a > 0. Why doesn't $x^2 + y^2 z^2 = 0$ define a manifold?
 - 9. Explicitly exhibit enough parametrizations to cover $S^1 \times S^1 \subset \mathbb{R}^4$.
- 10. "The" torus is the set of points in \mathbb{R}^3 at distance b from the circle of radius a in the xy plane, where 0 < b < a. Prove that these tori are all diffeomorphic to $S^1 \times S^1$. Also draw the cases b = a and b > a; why are these not manifolds?
- 11. Show that one cannot parametrize the k sphere S^k by a single parametrization. [HINT: S^k is compact.]
- *12. Stereographic projection is a map π from the punctured sphere $S^2 \{N\}$ onto \mathbb{R}^2 , where N is the north pole (0, 0, 1). For any $p \in S^2 \{N\}$, $\pi(p)$ is defined to be the point at which the line through N and p intersects the xy plane (Figure 1-6). Prove that $\pi: S^2 \{N\} \to \mathbb{R}^2$ is a diffeomorphism. (To do so, write π explicitly in coordinates and solve for π^{-1} .)

Note that if p is near N, then $|\pi(p)|$ is large. Thus π allows us to think of S^2 a copy of R^2 compactified by the addition of one point "at infinity." Since we can define stereographic projection by using the

Figure 1-6

south pole instead of the north, S^2 may be covered by two local parametrizations.

- *13. By generalizing stereographic projection define a diffeomorphism $S^k \{N\} \longrightarrow \mathbb{R}^k$.
- *14. If $f: X \to X'$ and $g: Y \to Y'$ are smooth maps, define a product map $f \times g: \dot{X} \times Y \to X' \times Y'$ by

$$(f \times g)(x, y) = (f(x), g(y)).$$

Show that $f \times g$ is smooth.

- 15. Show that the projection map $X \times Y \to X$, carrying (x, y) to x, is smooth.
- *16. The diagonal Δ in $X \times X$ is the set of points of the form (x, x). Show that Δ is diffeomorphic to X, so Δ is a manifold if X is.
- *17. The graph of a map $f: X \longrightarrow Y$ is the subset of $X \times Y$ defined by

graph
$$(f) = \{(x, f(x)) : x \in X\}.$$

Define $F: X \to \operatorname{graph}(f)$ by F(x) = (x, f(x)). Show that if f is smooth, F is a diffeomorphism; thus graph (f) is a manifold if X is. (Note that $\Delta = \operatorname{graph}(\operatorname{identity})$.)

*18. (a) An extremely useful function $f: \mathbb{R}^1 \to \mathbb{R}^1$ is

$$f(x) = \begin{cases} e^{-1/x^2} & x > 0 \\ 0 & x < 0 \end{cases}$$

Prove that f is smooth.

(b) Show that g(x) = f(x - a)g(b - x) is a smooth function, positive on (a, b) and zero elsewhere. (Here a < b.) Then

$$h(x) = \frac{\int_{-\infty}^{x} g \, dx}{\int_{-\infty}^{\infty} g \, dx}$$

is a smooth function satisfying h(x) = 0 for x < a, h(x) = 1 for x > b, and 0 < h(x) < 1 for $x \in (a, b)$.

(c) Now construct a smooth function on \mathbb{R}^k that equals 1 on the ball of radius a, zero outside the ball of radius b, and is strictly between 0 and 1 at intermediate points. (Here 0 < a < b.)